
UNCLASSIFIED

Secure Ad Hoc Networking on an Android

Platform

Angus Morton, David Adie, Paul Montague

Cyber and Electronic Warfare Division

Defence Science and Technology Organisation

DSTO–TN–1390

ABSTRACT

This document describes and analyses a suite of applications for the Android
platform that enables easy and secure ad hoc networking, with a focus on
extensibility and reusability. The applications were developed by the first
author during a Swinburne University Industry-Based Learning placement at
the Defence Science and Technology Organisation, under the latter’s Industry
Experience Placement Program.

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

DSTO–TN–1390 UNCLASSIFIED

Published by

DSTO Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 333 362
Facsimile: (08) 7389 6567

c© Commonwealth of Australia 2014
AR No. 016-201
May, 2014

APPROVED FOR PUBLIC RELEASE

ii UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Secure Ad Hoc Networking on an Android Platform

Executive Summary

Android is a quickly maturing open source platform that is being widely adopted by
individuals and by organisations (including Defence). This document describes a proto-
type implementation of a secure ad hoc networking system for Commercial Off The Shelf
(COTS) Android platforms with a focus on extensibility and security. This implementa-
tion utilises Near Field Communication (NFC) and Bluetooth to create secure, mutually
authenticated ad hoc networks between devices for the sharing of information. The de-
velopment work was conducted during a Swinburne University Industry-Based Learning
(IBL) placement at the Defence Science and Technology Organisation (DSTO), under the
latter’s Industry Experience Placement (IEP) Program.

One of the core issues surrounding Android involves the security of the operating sys-
tem. Security-Enhanced Android (SE Android) aims to mitigate some of these issues by
applying Mandatory Access Control (MAC) to Android. SE Android’s MAC is currently
applied to Android 4.4, however it is in permissive mode for most applications, and en-
forcing for root level applications only. In addition to the implicit protections provided by
SE Android, we utilised SE Android’s MAC to assist in securing our applications through
the use of a global security policy. The policy restricts the permissions granted to our
applications and other applications on the devices.

In order to enable mutual authentication each device is provisioned with a certificate
that is signed by the Device Issuing Authority (DIA). The DIA provides the root of trust
that ensures the legitimacy of the devices. The certificate provided by the DIA includes
information about the owner of the device, which may be one or more of:

• name

• address

• date of birth

• ID card number

• portrait of owner.

Once the device is provisioned, connections can be initiated by tapping two devices
together, this uses NFC to bootstrap a Bluetooth connection. Once the two devices are
connected via Bluetooth, the station-to-station protocol is run which mutually authenti-
cates the devices to one another using the DIA signed certificates. These connections are
maintained by a session manager on the Android platform that allows new applications
to be written that make use of this secure connectivity capability.

UNCLASSIFIED iii

DSTO–TN–1390 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

iv UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Contents

Abbreviations vii

1 Introduction 1

2 Android Security 1

2.1 SE Android . 3

2.1.1 Adoption of SE Android . 3

2.1.2 Middleware MAC . 4

2.2 Residual Issues . 4

3 Device Provisioning 5

3.1 Implementation . 5

3.1.1 Host . 5

3.1.2 Device . 6

3.2 Security Discussion . 7

4 Connectivity 8

4.1 NFC . 8

4.2 Bluetooth . 10

4.3 Implementation . 11

4.3.1 NFC to Bluetooth Handover . 11

4.3.2 Connection Protocol . 12

4.4 Security Discussion . 13

4.4.1 Eavesdropping . 13

4.4.2 Relay Attacks . 13

4.4.3 Replay Attacks . 14

4.4.4 Denial of Service Attacks . 14

5 Session Management 14

5.1 Implementation . 14

5.1.1 Activity . 15

5.1.2 Service . 16

5.2 Peer Discovery . 16

5.3 Security Discussion . 17

UNCLASSIFIED v

DSTO–TN–1390 UNCLASSIFIED

6 Future Work 18

References 19

Appendices

A Certificate Authority Key Generation 22

B CSR to CA Signed Certificate 23

C SE Android Install-time MAC Policy 25

vi UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Abbreviations

ADB Android Debug Bridge

AES Advanced Encryption Standard

AOSP Android Open Source Project

API Application Programming Interface

ASLR Address Space Layout Randomisation

BLE Bluetooth Low Energy

CA Certificate Authority

COTS Commercial Off The Shelf

CPU Central Processing Unit

CSR Certificate Signing Request

DARPA Defense Advanced Research Projects Agency

DIA Device Issuing Authority

DoS Denial of Service

DSTO Defence Science and Technology Organisation

ECDSA Elliptic Curve Digital Signature Algorithm

GPS Global Positioning System

IBL Industry-Based Learning

ID Identifier

IEP Industry Experience Placement

IPC Inter-Process Communication

IR Infrared

MAC Mandatory Access Control

MITM Man-In-The-Middle

MMAC Middleware Mandatory Access Control

NFC Near Field Communication

NSA National Security Agency

NX No eXecute

UNCLASSIFIED vii

DSTO–TN–1390 UNCLASSIFIED

OS Operating System

P2P Peer-to-Peer

PIN Personal Identification Number

RAM Random-Access Memory

RF Radio Frequency

SE Secure Element

SE Android Security-Enhanced Android

SMS Short Message Service

SSP Simple Secure Pairing

TPM Trusted Platform Module

USB Universal Serial Bus

UUID Universally Unique IDentifier

viii UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

1 Introduction

There has been significant development in the area of secure mobile computing recently,
including the development of commercial off the shelf (COTS) Android secure platforms
such as Samsung’s KNOX1 and ESD’s Cryptophone 5002. Android can lever many useful
hardware features which the majority of devices support, including:

• location sensing, especially via Global Positioning System (GPS)

• hardware-backed credential storage

• wired connectivity i.e. Universal Serial Bus (USB) connectivity

• wireless connectivity i.e. Bluetooth, Wi-Fi, Near Field Communication (NFC).

In addition to supporting these features, Android is widely adopted and is being ac-
tively used for development by many governments and defence organisations around the
world (e.g. the National Security Agency’s (NSA) Security-Enhanced Android (SE An-
droid) [Smalley 2011], the Defense Advanced Research Projects Agency’s (DARPA) Mobile
Armor [Franceschi-Bicchierai 2012]), making it an attractive platform to develop with.

This report discusses the current state of security on Android, and a secure implemen-
tation for creating ad hoc networks among multiple devices with a view for extensibility.
The implementation is intended to provide a base which other applications can build off
and utilise easily and securely. The document also discusses both the security benefits and
drawbacks of using the proposed system. Furthermore there has been a focus on keeping
the devices COTS where possible, with the only modification made to the platform being
the inclusion of SE Android’s Install-time Mandatory Access Control (MAC) feature.

Some knowledge of Android is required to understand the system described in this
document. Getting Started [2013] provides an overview of the Android platform, as well
as in-depth tutorials on the relevant features of Android.

2 Android Security

This section will focus on the Platform Security Architecture, as described in Android
Security Overview [2013]. A more comprehensive discussion of Android security is provided
by Gleeson & Lucas [2013].

The Android kernel has many differences to that of Linux, which are driven not only
by the need to support the additional hardware present in mobile devices, but also by the
removal of some Linux kernel features as part of a process of simplification – thus reducing
the attack surface [Fledel et al. 2012]. The overall architecture of the Android software
stack is given in Figure 1 for ease of reference.

The main security features of the Android operating system (OS) include:

1http://www.samsung.com/global/business/mobile/solution/security/samsung-knox
2http://esdcryptophone.com/pdf/Brochure-CP500.pdf

UNCLASSIFIED 1

DSTO–TN–1390 UNCLASSIFIED

Figure 1: Android Software Stack [Android Security Overview 2013].

• Application Sandbox – All applications above the Linux Kernel layer (per Figure
1), even native code and operating system applications, are sandboxed by the kernel
layer sandbox support. This means that applications cannot easily access/modify
the code/data of other applications [Android Security Overview 2013]. Sandboxing
on Android has the following properties:

– Unique user ID – each application is assigned a unique user ID on installation
which is used to enforce the sandboxing [Khan et al. 2010]. However two ap-
plications can optionally share an ID if they are signed by the same developer.

– Unique processes – each application typically runs in its own process. However
if two applications are signed by the same developer they can optionally be run
in the same process [Khan et al. 2010].

– Install-time Permissions – In order to access resources, Android applications
must request the required permissions for that resource (as specified in their
AndroidManifest.xml) at install time. The user is responsible for accepting or
rejecting permissions [The AndroidManifest.xml File 2013, Khan et al. 2010].

– Data Security – By default files created by an application are owned by that
application’s unique ID and are, therefore, only readable or writable by that
application [Liebergeld & Lange 2013]

• Code Integrity:

– Signed Applications – Applications must be signed by the developer’s private
key. Note that the developer’s certificate may be self-signed [Android Security
Overview 2013].

2 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

– Application Verification – The Package Manager verifies that the application
has been signed and checks its signature against the included certificate [Android
Security Overview 2013].

– Read-only System – The system partition that contains the application frame-
work, application runtime, and shared libraries is mounted as read-only by
default [Liebergeld & Lange 2013].

• Memory management security: the kernel includes memory management security
features such as hardware-based No eXecute (NX) to prevent code on the stack/heap
being executed, as well as Address Space Layout Randomisation (ASLR) and format
string vulnerability protections.

• Filesystem encryption: from Android 3.0 onwards, full filesystem encryption (using
AES128 and SHA256) is supported [Android Security Overview 2013]. User data is
encrypted using a key derived from a user password.

2.1 SE Android

SE Android [Smalley 2012] is based on SELinux, which is a version of Linux enhanced with
Mandatory Access Control (MAC) in order to enforce a system wide security policy. User
programs and system daemons are confined by SELinux to the least amount of privilege
required to fulfil their role, thus limiting the amount of damage which they may inflict
if compromised [Loscocco & Smalley 2001]. SE Android applies the same concept to
Android, in order to:

• confine privileged daemons

• sandbox and isolate applications more strongly than the standard Android mecha-
nisms (including preventing privilege escalation)

• provide a fine-grained and centralised security policy.

The NSA’s motivation [Smalley 2013, Smalley 2012] for the development of SE Android
arose from the increasing desire to use mobile devices within government, recognition of the
widespread adoption of Android in the market and an overall need for improved security in
mobile operating systems. The goal of the SE Android project was “to identify and address
critical gaps in the security of Android” [Smalley 2013], initially by applying SELinux to
Android, though the scope of the project is not limited to this.

The NSA note that SE Android is not a government-specific version of Android, nor
is it evaluated or approved in any way [Smalley 2012]. Rather, it is a set of security
enhancements that focusses on security gaps of wide applicability and “targeting mainline
Android adoption” [Smalley 2013].

2.1.1 Adoption of SE Android

The decision to utilise SE Android was supported by the gradual introduction of SE
Android into the Android Open Source Project (AOSP) mainline. AOSP now utilises

UNCLASSIFIED 3

DSTO–TN–1390 UNCLASSIFIED

the SE Android kernel modifications for MAC. As of Android 4.4, SE Android runs in
enforcing mode for the root domain and root level applications, though permissive mode
is still applied by default for the application domain within which user applications reside
[Validating Security-Enhanced Linux in Android 2013]. In permissive mode, which 4.3
used globally, policy violations are logged but not denied.

Other SE Android functionality still remains to be activated in stock versions of An-
droid – notably Middleware Mandatory Access Control (MMAC) – without which the
secure management of inter-app communications by the Android OS is limited [Smalley
& Craig 2013]. Additionally, the policy used by default in Android 4.3 and 4.4 is liberal
in order to limit the number of applications that are blocked. However, it is anticipated
that a stronger policy will be introduced as well as SE Android MMAC in future versions
of Android.

2.1.2 Middleware MAC

SE Android provides, in addition to kernel level protection, middleware MAC (MMAC)
support for a small set of features (at the time of writing). Full MMAC is required for
the Android platform because not all attacks can be contained at the kernel level (e.g.
Permission re-delegation [Felt et al. 2011]).

The SE Android project included a number of experimental solutions in the past for
handling MMAC. However the only three continuing and ongoing solutions are Install-
time MAC, Enterprise Operations, and the more recent IntentFirewall3 (introduced in
Android 4.3). It is expected that the required functionality from the experimental solu-
tions will be introduced in the future using a combination of Enterprise Operations and
the IntentFirewall, and that these features will subsequently be introduced into mainline
AOSP.

2.2 Residual Issues

Whilst SE Android mitigates many of the residual security issues of stock Android, some
vulnerabilities still remain, for example:

• kernel vulnerabilities [Smalley 2012]

• poor security policy – a strong security policy and security-focused application ar-
chitecture are critical

• recovery or other boot-chain related methods [Fora 2013]

• malicious hardware [Beaumont, Hopkins & Newby 2011].

3http://selinuxproject.org/page/SEforAndroid

4 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

3 Device Provisioning

In order to be able to identify an individual and their device in the field, the device must be
provisioned with some identifying details to distinguish it and its owner. In this example
we use a basic X.509 certificate with the owner’s name as the identifying feature, however
additional information could be included in the certificate, for example:

• portrait of device owner4

• date of birth

• ID number

• home address.

The provisioning process is undertaken in a secure environment with a trusted host.
Once a device is provisioned it is able to identify itself to another device, and each device
is able to prove that it is who it claims to be. The implementation of the provisioning
process is discussed in detail in Section 3.1.

The protocol for the device provisioning is as follows:

1. Host → Device: Relevant certificate details (e.g. full name, date of birth, organisa-
tion ID number, photo).

2. Device: Create private-public key pair (stored on hardware key storage if available).

3. Device: Create certificate signing request (CSR) using generated key pair.

4. Device → Host: Certificate signing request containing the relevant details.

5. Host: Creates Certificate Authority (CA) signed certificate from the CSR.

6. Host → Device: CA signed device certificate and CA certificate for verification.

7. Device: Verify that the device certificate was signed by the CA and includes all
supplied details correctly.

3.1 Implementation

3.1.1 Host

The host in the implemented prototype runs a Java application, whose role in the pro-
visioning process is to provide a trusted certificate issuing authority as well as any extra
information like photos of the owner, biometric data etc. In the prototype implementation
the host will be referred to as the Device Issuing Authority (DIA).

For this prototype implementation the DIA accepts a connection over the Android
Debug Bridge (ADB) using the port forwarding mechanism [Android Debug Bridge 2013].

4RFC 6170, http://www.rfc-base.org/txt/rfc-6170.txt

UNCLASSIFIED 5

DSTO–TN–1390 UNCLASSIFIED

Note that in a production environment the Android Accessory Communication Protocol5

is the preferred method for communication from host to device.

The private-public CA key pair are 2048 bit RSA keys. The keys were generated using
the Java keytool command to create a Java keystore file (.jks), the command used can be
found in Appendix A. As of Android 4.4 support for elliptic curve keys has been extended
to the Android key store, which means that the keys generated can optionally be elliptic
curve digital signature algorithm (ECDSA) keys.

When the Host receives the CSR it programmatically generates and signs a certificate.
Relevant parts of the Java code used in the prototype are shown in Appendix B.

3.1.2 Device

The device-side of this implementation is an Android application made up of three com-
ponents (as highlighted in Figure 2). Each of these components performs a specific role
as described below:

• Application – Enforces the application logic and handles the connection to the Host

• Signing Service – Stores the device private key and device certificate, and signs
objects with the device private key. Note that the private key never leaves the
application boundary of the Signing Service.

• Verifying Service – Stores the CA certificate, device certificate, and any other relevant
certificates that are needed. Verifies objects and certificates were signed by the
proper entity.

The application is designed such that services can be re-used in the future. In addition,
it allows delineation and separate accreditation of the code handling sensitive data (Signing
Service).

Figure 2: Device-side application architecture highlighting sandbox separation.

5http://developer.android.com/guide/topics/connectivity/usb/index.html

6 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

The Signing Service makes use of the Android Keystore, which was introduced in
Android 4.3 to handle application specific keys. The Android Keystore is a security
provider that will automatically generate hardware-backed keys if a hardware-backed
keystore is available (Secure Element, Trusted Platform Module (TPM), or TrustZone)
[Elenkov 2013]. Hardware-backed keys are bound to the hardware and are unable to be
read even at the kernel layer. Note that on TrustZone-based devices, keys are encrypted
with a hardware-bound master key then stored on the file-system. This allows any number
of keys to be protected by the hardware.

Given that the private key is secured by hardware and resistant to exfiltration it is
important to protect the Signing Service in order to prevent it from performing opera-
tions for an adversary inadvertently. To this end the Signing Service is protected by two
Android permissions, one for adding new key pairs and the other for signing objects. It
is important to note that we do not declare the permissions as signature level to avoid
potentially dangerous permission combinations by other applications signed by the same
signer. (This is because when a permission is declared with the signature level of protec-
tion it is automatically granted to all applications signed by the same signer [Permission
Element 2013].) Instead we rely on SE Android and a custom security policy that prevents
other applications from being granted our permissions. See Appendix C for an example
SE Android install-time MAC policy that protects our permissions.

3.2 Security Discussion

Since the provisioning process is the foundation upon which the rest of the trusted inter-
actions are built, it is important to ensure it is secure. As such there are a number of
security considerations to take into account during device provisioning:

• In the case of where there are no secure key storage/generation facilities Android falls
back on software storage, and the keys are stored on the file system encrypted with
a key derived from the device unlock code. The Android Application Programming
Interface (API) supports a method called ‘isHardwareBacked()’ which returns true
if key storage and generation is hardware secured.

• Without install-time MAC it is difficult to ensure a malicious application cannot be
granted permission to use the Signing Service (Note that signature level permissions
are not used).

• Most Android devices on the market support TrustZone – Vulnerabilities in Mo-
torola’s TrustZone kernel have been found in the past[Rosenberg 2013], where the
boot loader was unlocked to enable the use of system images not signed by the
developer.

• Certificate Authority must be secure – If the CA is compromised the root of trust
for all of the devices provisioned by the CA is compromised. In this system the CA
resides on an air-gapped computer.

In order to mitigate some of these issues related to the provisioning of devices we
built AOSP with the SE Android MMAC changes. This decision was driven by the fact

UNCLASSIFIED 7

DSTO–TN–1390 UNCLASSIFIED

that Android has been progressively introducing SE Android into mainline AOSP, so we
anticipate that Google will include install-time MAC in the future. This meant we were
able to write our own policy that grants the signing service permission to a few select
applications only. For an example of the install-time MAC policy used for the signing
service see Appendix C.

Judging by the vulnerabilities found in Motorola’s TrustZone kernel previously, it
may be necessary to move to a more secure solution for storing the sensitive information
(including private keys). The ideal solution would be to store the keys on a dedicated and
tamper-resistant hardware module like a Secure Element (SE), though this is typically not
possible without vendor assistance because only the device vendor has access to the SE.

4 Connectivity

One of the key benefits of the Android platform is the number of features it supports off
the shelf, including a wide selection of connectivity capabilities. These generally include
Bluetooth, Near Field Communication (NFC), WiFi, Peer-to-Peer WiFi, as well as Infrared
(IR) Communication in the future6. This section discusses a selection of connectivity
capabilities utilised by the prototype, including potential security benefits, issues, and
solutions associated with their use.

4.1 NFC

NFC is a very short-range (up to 10 cm) radio communication technology [Agrawal &
Bhuraria 2012], that supports communication in three different ways:

• Card Emulation – The NFC chip acts like a contactless smart card.

• Reader Emulation – The NFC chip acts like a card reader to read smart cards.

• Peer-to-Peer – This mode enables two-way communication between two NFC enabled
devices.

Each of these operating modes is achieved in a different way, with the initiator and
target performing different roles. As shown in Figure 3 each device can be either active
or passive. If a device is active it is creating a radio frequency (RF) field whereas if it is
passive it is not creating an RF field, and instead uses inductive coupling to communicate
[Van Damme, Wouters & Preneel 2009].

When the NFC feature was introduced in Android 2.37 it was relatively limited in that
it only supported two modes: peer-to-peer, and reader emulation. Furthermore, the API
is relatively limited in what it allows programmers to achieve using peer-to-peer mode, in
that they can only perform an NFC ‘NDEF beam’ to transmit a single block of data one

6http://developer.android.com/guide/topics/connectivity/index.html
7http://developer.android.com/about/versions/android-2.3-highlights.html

8 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Initiator Target

Card Emulation Passive Active

Reader Emulation Active Passive

Peer-to-Peer Active Active

Figure 3: NFC operating modes and device RF behaviour.

way. This has limited the use of NFC for security purposes to using it as a method for
bootstrapping another communication channel, as shown in Section 4.3.1.

Although the use of NFC is limited by the current API, it is still an attractive method
of communication for a number of reasons:

• Short-range – Simplifies identifying which device you are attempting to communicate
with. As opposed to navigating menus to select the intended device out of a list of
possible devices.

• Man-in-the-Middle Resistant – Haselsteiner & Breitfuß [2006] determined that stealthy
Man-in-the-Middle attacks are infeasible over NFC. Note that relay attacks are still
viable, whereby a malicious pass-through device simply passes the NFC messages on
to the real device and eavesdrops on the communication.

• User friendly – All NFC requires is an intuitive tap against another NFC enabled
device or tag.

• Energy Efficient – The passive side of communications has low to no energy usage.

Some issues with NFC remain, however, for example:

• Quite slow – Expected speeds between 106 kbps, and 424 kbps, making NFC un-
suitable for sending large amounts of data[Remedios et al. 2006].

• Eavesdropping – NFC should not be considered a confidential communication chan-
nel because it is not encrypted by default. Furthermore Haselsteiner & Breitfuß
[2006] suggest the average distance for successful eavesdropping to be between 1m
and 10 m, depending on the scenario. Furthermore Kortvedt & Mjølsnes [2009] dis-
covered they could eavesdrop at a distance of 20-30cm using an improvised passive
listener without performing any amplification or filtering.

• Denial of Service attacks – Like other wireless communication methods NFC is open
to interference.

• Data Modification – Haselsteiner & Breitfuß [2006] determined that this attack is
feasible, depending on the strength of the amplitude modulation. In the best-case
scenario it is possible to modify certain bits but impossible for others. The worst-
case allows modification of all bits. Whether this could be used to meaningfully
modify data in real-time is unknown at this stage.

UNCLASSIFIED 9

DSTO–TN–1390 UNCLASSIFIED

• Data Insertion – This is where data is inserted into the data exchange between two
devices by an attacker in place of a response message from the answering device. This
is only feasible if the attacker finishes transmitting the inserted packet before the
answering device begins transmitting the legitimate reply [Haselsteiner & Breitfuß
2006].

In order to protect against eavesdropping over NFC some form of key agreement proto-
col would need to be implemented. A standard unauthenticated key agreement protocol,
combined with a cipher, would protect against eavesdropping, and could be implemented
in the application space. Alternatively, Haselsteiner & Breitfuß [2006] propose an efficient
NFC specific key agreement mechanism to eliminate eavesdropping and make meaningful
data modification more difficult. Protecting against eavesdropping is important and is
discussed further in Section 4.4.1.

4.2 Bluetooth

Bluetooth is a wireless technology standard used to transmit data over short distances by
creating ad hoc networks called piconets. A piconet is a set of two or more Bluetooth
devices operating on the same channel using the same frequency hopping sequence. Blue-
tooth uses frequency hopping to reduce interference and transmission errors, as well as
provide limited transmission security, since Bluetooth operates on a range of frequencies
[Padgette, Scarfone & Chen 2012].

As of Android 4.3 both classic Bluetooth as well as Bluetooth Low Energy are sup-
ported. This section, however, only refers to classic Bluetooth as there are some key
differences between the classic and low energy variants8. For example Bluetooth Low En-
ergy has a much lower data throughput than classic. Furthermore, Bluetooth Low Energy
does not provide passive eavesdropping protection, whereas classic does.

Some of the benefits of using Bluetooth for ad hoc networks over other wireless con-
nectivity standards (like Wi-Fi) are:

• Low energy use – Compared to ad hoc Wi-Fi, especially when the Bluetooth device
is non-discoverable (the default for Android) [Friedman, Kogan & Krivolapov 2013].

• Short-range – 5 to 9 metre radius of connectivity [Kizza 2013, Padgette, Scarfone &
Chen 2012]

• Fast – Theoretical throughput of 2.1 Mbps [Padgette, Scarfone & Chen 2012]

• Power Control – Devices in a piconet can adjust their radio power levels by incremen-
tally increasing or decreasing the transmission power to conserve power and reduce
the signal range. [Padgette, Scarfone & Chen 2012]

The combination of radio power control and frequency hopping provide some implicit
protection against eavesdropping and malicious access. Although Spill & Bittau [2007]

8developer.bluetooth.org/TechnologyOverview/Pages/LE-Security.aspx

10 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

describe a method by which they were able to calculate the hopping sequence and, there-
fore, eavesdrop on the communications (given hardware with the appropriate frequency
switching abilities).

Since Bluetooth is a wireless technology it suffers from some of the same weaknesses
such as denial of service attacks, eavesdropping, man-in-the-middle attacks, message mod-
ification, and so on. One example of a weakness is a theoretical attack described by
Lu, Meier & Vaudenay [2005] where they were able to recover the encryption key in 238

computations. This attack could be mitigated by applying an application-layer encryp-
tion scheme over the top (such as Diffie-Hellman with an Advanced Encryption Standard
(AES) cipher[Menezes, van Oorschot & Vanstone 1996]).

Android makes use of Bluetooth security mode 4, which uses Simple Secure Pairing
(SSP) whereby Elliptic-Curve Diffie-Hellman key exchange is performed after a link has
been established. This is at odds with Padgette, Scarfone & Chen [2012] who recommend
the use of security mode 3 over the other modes because it requires the establishment of
authentication and encryption before the physical link is completely established. Unfor-
tunately on Bluetooth 2.1+ devices, security mode 4 is the default mode.

4.3 Implementation

In order to create a mutually authenticated, secure channel with another device, we use a
two step process involving NFC and Bluetooth:

1. The two devices are brought into contact and NFC is used to establish a pairing
by passing of a Bluetooth MAC address and channel ID. This process of NFC to
Bluetooth handover is described further in Section 4.3.1.

2. The devices execute the Station-to-Station protocol via Bluetooth, bootstrapping
the secure connection from the NFC contact. This protocol is described further in
Section 4.3.2.

This two step process confers a number of benefits over a purely Bluetooth connection
process, for example rather than a complex Bluetooth configuration process the user can
simply touch the devices together to initiate a connection. Furthermore, it bypasses the
Bluetooth discovery protocol, which means that the devices will not respond to discovery
queries from external devices.

4.3.1 NFC to Bluetooth Handover

The first part of the process is called handover. This is whereby the connection details get
handed to another device, which the other device then uses to initiate a connection. On
Android 4.3 the flexibility of this part of the protocol is limited by the API with respect
to how the application layer can interact over NFC (see Section 4.1). The NFC part of
the protocol sends the following information to the receiver, which the receiver then uses
to initiate a Bluetooth session with the sender:

UNCLASSIFIED 11

DSTO–TN–1390 UNCLASSIFIED

• Device Bluetooth MAC Address – Used by the receiving device to initiate a connec-
tion directly, bypassing Bluetooth’s discovery process.

• Service Record Universally Unique ID (UUID) – A random 128 bit UUID generated
as per RFC41229 that describes the service to connect to.

Once the connection information is sent via NFC, the sender begins listening for a
connection from the UUID. Once a connection from the UUID is created, it stops listening
for connections on that UUID.

4.3.2 Connection Protocol

Once a wireless connection between two devices is established the secure session estab-
lishment protocol begins. It is assumed that each device is provisioned with the following
data (see Section 3 for provisioning process):

• device certificate, issued by the DIA

• device private key

• DIA certificate.

The underlying protocol for secure session establishment between the devices (A and
B), once each has been unlocked by its user via a personal identification number (PIN)
(or ideally biometric in future) is (heuristically) as follows:

1. Establish shared secret using Elliptic Curve (EC) Station-to-Station protocol [Menezes,
van Oorschot & Vanstone 1996] (using EC cryptographic primitives). Note: this is a
key exchange protocol involving mutual authentication of the two parties (and also
key authentication). In addition, each party’s certificate is included in the exchange
as no prior association of the devices is assumed.

(a) A → B: rAP , where rA is a (temporary, secret) random value generated by A
and P is the agreed fixed point on the (publicly known) elliptic curve.

(b) B → A: rBP || EK(SB(rBP ||rAP)) || CB, where rB is a (temporary, secret)
random value generated by B, EK denotes encryption using the key K derived
from the shared secret rArBP , SX denotes a signature by party X using its
device private key and CX is the device certificate of X.

(c) A: Decrypt and verify B’s signature against it’s provided certificate, and its
certificate against the stored DIA public key.

(d) A → B: EK(SA(rAP ||rBP)) || CA.

(e) B: Decrypt and verify A’s signature against its provided certificate, and its
certificate against the stored DIA public key.

2. Derive session key from shared secret, and hence establish a mutually authenticated
secure channel.

9RFC4122, http://www.ietf.org/rfc/rfc4122.txt

12 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

This protocol is implemented at an abstract level and can therefore be applied to any
connection medium supported by Android. Notice that the protocol ensures that the
connected device has been issued a certificate from the DIA and that they have access to
the private key associated with that certificate. Furthermore the freshness of the exchange
is guaranteed by the nonce rBP ||rAP .

4.4 Security Discussion

In addition to the various security issues of each of the technologies used in connection
initialisation, there are a number of additional issues that are described below.

4.4.1 Eavesdropping

Eavesdropping can occur during the NFC phase between the two devices. For example,
Alice is using NFC to bootstrap the Bluetooth communication with Bob, and Eve eaves-
drops on the MAC address and UUID passed over NFC. Once Eve has the MAC and UUID
she can attempt to make a connection with Alice in place of Bob. If Eve is in possession
of a legitimate device (or has access to signed certificates/private keys) she can fool Alice
into communicating with her instead of Bob.

As discussed in Section 4.1 the NFC communication can be secured using a key ex-
change protocol. Alternatively, if future versions of Android support message response
capabilities over NFC, the full station-to-station protocol could be completed via NFC.
This would ensure that the device you tap against is the device you created a session key
with.

4.4.2 Relay Attacks

Relay attacks, whereby a device acts as a proxy for a connection between a legitimate
local target device and a legitimate remote target device (possibly via a secondary proxy
in the remote location) would convince the local target device that it is interacting with
it rather than the remote target device. Such attacks may be mitigated by use of:

• Dedicated hardware schemes for limiting the radius within which proxy forwarding
may occur (i.e. based on the finite speed of light).

• Additional verification mechanisms, for example:

– The display of common (random) numbers/imagery on each device, verified by
each participant (less easy to relay by proxy).

– Biometric authentication of each user to the other’s device which is associated
to a certificate linking each user’s biometric to his/her device user ID. Note
that this only ensures that the expected users are physically present, it does
not protect against device proxying.

Note that we leave the mitigation of relay attacks for future work.

UNCLASSIFIED 13

DSTO–TN–1390 UNCLASSIFIED

4.4.3 Replay Attacks

Replay attacks are where an adversary, Eve, eavesdrops on a key exchange protocol be-
tween communicating parties, Alice and Bob, and then uses the recorded key exchange
protocol to mimic the parties at a later time. This gives the eavesdropper the ability to
fool Bob into thinking that she is Alice, or vice versa. Replay attacks are mitigated in the
station-to-station protocol by having the devices sign and encrypt the temporary secrets
for verification. This means that unless the device that is being tricked happens to gen-
erate the same temporary secret twice it will be able to detect that the other device does
not have access to the device private key. It is unlikely to generate the same temporary
secret twice (assuming random number generation is truly random) because the minimum
key size for this application is 256 bits, which provides > 1077 possible values.

4.4.4 Denial of Service Attacks

Denial of service attacks are a broad category of attacks that aim to make a particular
service or resource unavailable. Pelechrinis, Iliofotou & Krishnamurthy [2011] describe a
number of jamming models, ranging from a constant jammer that transmits data con-
stantly to more intelligent models that can selectively insert or destroy certain packets to
disrupt communications. These kinds of attacks are not actively mitigated in this system,
although given the use of an encrypted channel, utilising an intelligent jammer would be
more difficult.

5 Session Management

On Android the life-cycle of an Activity10 can be quite volatile and can change by way of
user interaction, for example checking another application quickly, such as Short Message
Service (SMS) or e-mail. This makes creating and storing the connection state inside an
Activity difficult for the user to understand, especially when there are multiple applica-
tions that are part of the same application suite. Furthermore establishing a session is a
relatively costly in terms of resources spent for both the devices and the user, therefore it
is not ideal to create sessions constantly.

5.1 Implementation

The life-cycle problem may be solved by a session manager. The session manager is im-
plemented as an Android service that is used to maintain connections across applications.
This is done for a number of reasons, including:

• Usability – Users create connections once, which can be re-used for multiple tasks
and are not closed when an Activity closes.

10An Activity is a basic application component for the Android platform; for more information see:
http://developer.android.com/guide/components/activities.html

14 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

• Always listening – The service can listen for messages to a specific application and
create notifications for the user. For example, if the session manager service receives
a file send request it can show a notification alerting the user that someone wants
to send a file to their device.

• Reduce permissions – Each application only has the minimum set of permissions
required. A single permission to access SessionService means that applications can
make use of Bluetooth/NFC without directly having access to those features.

• Defined Interface – SessionService mediates other application’s access to its features
through a well-defined interface that includes methods for tasks such as sending
messages, and registering receivers.

• Re-use – The session service can be reused by applications without having to alter
any of the existing code. This means new applications that rely on ad hoc networking
can be quickly developed rather than having to develop the ad hoc networking code
themselves. Note that this depends on the Android API versions being constant
among the applications.

• Modular design – The session service supports the idea of modules that can be
hooked into the existing lifecycle of the service. This allows modules to act when
events occur, for example to create a notification when a message is received.

Unfortunately there are some drawbacks that affect the usefulness of the session service.
These issues will influence the potential use-cases that can be implemented using the
session service.

• Inter-Process Communication (IPC) – Restricts the size of messages sent over the
session service because IPC must be used for every message. Currently this buffer
is set to 1Mb which is shared by all transactions that are currently in progress for
that specific process [TransactionTooLargeException 2013].

• Higher resource utilisation – Running the service in another process consumes more
random-access memory (RAM) and central processing unit (CPU) time. This could
be a problem for low specification devices with low RAM or a slow CPU.

• User Error – Users may leave the sessions open after they are finished. This increases
the time-frame within which a device can be subject to attack, since it is still listening
and communicating over Bluetooth/Wi-Fi. This means that any vulnerabilities in
the communication stacks have more time to be exploited by an adversary.

• Speed – Because of the level of abstraction and IPC performed, the session service
is somewhat slower than performing this work in the same process.

5.1.1 Activity

The session manager has a set of Activities that are responsible for handling the initiali-
sation of the connections. This set includes an NFC Activity that is used to transfer the
required details for the session service to begin the connection protocol. This Activity is

UNCLASSIFIED 15

DSTO–TN–1390 UNCLASSIFIED

registered to not only use Android Beam to push data, but also to listen for NFC pushes.
This means that the same Activity can do either, depending on whichever person activates
the NFC beam first. The steps for transmitting the connection details via NFC are as
follows:

1. A: Retrieve Bluetooth MAC address from Bluetooth adapter and generate new ran-
dom UUID.

2. A → B: Push MAC address and random UUID pair.

3. A: Listen for connection using the UUID.

4. B: Make active connection to MAC address on the service UUID provided.

Note that listening and active connection creation occur within the session service, and
is described in Section 5.1.2.

5.1.2 Service

The service can create Bluetooth connections or listen for connections. The way it acts
depends on the method called by the initiator Activity. Once a connection has been
initialised the session service queries the other device for an identity to associate to the
session. An identity is simply a wrapper for a device certificate that provides relevant
information about the owner of the device. This allows other applications to treat the
session as an individual rather than a connection. It also provides another point of verifi-
cation for the user, because identities can contain information such as a photo, name, and
date of birth that the user can verify.

The session service was created with a focus on re-use and modularity, thus it supports
a set of hooks that allow modules to be added to it dynamically in order to add behaviour
when certain events occur. For example, there is a module which displays a notification
to the user, alerting them to the number of devices that are currently connected to the
service. Another module, for instance, could scan messages for the appropriate subject
field and start an activity or create a notification based on that subject field. A module
that was implemented as part of this project is outlined in Section 5.2.

5.2 Peer Discovery

One module we created for the session service was a peer discovery module. This module
is responsible for dynamically discovering other peers in the network as they connect. It
is useful because of the way Android’s Bluetooth capabilities are used, rather than having
one single device that hosts the network, we create a large set of individual connections
between devices. Within these connections either device may be hosting that particular
link. This is required for a number of reasons including:

• Minimise the attack surface by restricting the time spent listening for connection to
those times we expect a connection.

16 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

• Increase usability by allowing anybody to initiate connections with anyone else in
order to be added to the network. This is especially important if there are a large
number of people linking their devices together.

Peer discovery begins when a new connection is detected. Both sides send an ‘initiate
peer discovery’ message and reply to the message with a list of their currently connected
peers (as represented by their identity). Once a list of peers is received, the receiver then
searches through the list to find any peers that it is not currently connected to. When one
is found the process performed is shown in Figure 4.

Figure 4: Peer discovery process.

Note that Device A and Device C are both already connected to, and aware of Device
B. Once this process is complete Device A initiates a direct connection to Device C using
the information provided in the connect response.

There are a few disadvantages to peer discovery:

• Adds small overheads when receiving messages because it needs to determine whether
or not a message is a peer discovery message.

• Adds small overhead when performing initial connection because it needs to perform
peer discovery in addition to the standard connection procedures.

• Moderately slow to find and connect to peers after initial connection (2-3 seconds).

• Relies on the Device B being a legitimate device and not altering the details provided
by Device A or C.

5.3 Security Discussion

While the session service provides a wide range of benefits to the overall system in terms
of usability and reuse, there are a number of potential security issues that arise as a result
of the design of the session service. For example:

• Signature level permissions are shared by all applications signed by the same signer.
This is not ideal because it could lead to potentially dangerous permission combina-
tions (for instance the session manager could gain write access to the signing service,
which means that the session manager could add/replace credentials).

UNCLASSIFIED 17

DSTO–TN–1390 UNCLASSIFIED

• If the Android system service is compromised, unencrypted traffic will be readable
by the adversary as IPC calls. This is because encryption occurs inside the session
service.

Such issues can be mitigated through the use of a strong application boundaries, and
permission schemes, as well as a good security review process. The SE Android kernel
and middleware MAC can be used to enforce the application boundaries and permission
schemes, as well as help prevent root exploits that could allow system applications to
become compromised.

6 Future Work

There are a number of potential areas for improvement identified throughout this report,
pertaining to both this specific project and also for some of the technologies utilised. Some
of these possible avenues of improvement or further research are:

• Card Emulation to achieve full key exchange over NFC11 (host-based card emulation
was introduced in Android 4.4).

• Investigate potential USB-to-USB connectivity12 for more sensitive transactions.
Whether or not this is possible with the current platforms is unknown at this stage.

• Investigate the use of IR in place of NFC13 to minimise eavesdropping. Though
there are not many Android devices with IR support released at the time of writing,
the introduction of the API indicates that hardware supporting it will be released
in the future.

• Haselsteiner & Breitfuß [2006] describe an NFC specific key-exchange protocol that
could be used to encrypt NFC communications efficiently. This would bolster the
overall security of NFC and help to eliminate threats such as eavesdropping.

• Implementation of a biometric authentication method whereby user A authenticates
himself/herself to user B’s device to eliminate man-in-the-middle (MITM) attacks.
For example, facial recognition, which could make use of the forward or rear facing
cameras available on most Android devices, may be used.

• Investigate the potential for utilising the secure element in Android devices to store
sensitive information (for instance, private keys). This would involve working with
the handset manufacturers in order to gain access to the secure element.

11http://developer.android.com/guide/topics/connectivity/nfc/hce.html
12http://developer.android.com/tools/adk/index.html
13http://developer.android.com/about/versions/android-4.4.html

18 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

References

Agrawal, P. & Bhuraria, S. (2012) Near field communication, IT Matters 67.

Android Debug Bridge (2013) URL – http://developer.android.com/tools/help/adb.
html. [Accessed: 18-December-2013].

Android Security Overview (2013) URL – http://source.android.com/tech/security/.
[Accessed: 18-December-2013].

Beaumont, M., Hopkins, B. & Newby, T. (2011) Hardware Trojans-Prevention, Detection,
Countermeasures (A Literature Review), Technical report, DTIC Document.

Elenkov, N. (2013) Credential storage enchancements in Android 4.3. URL – nelenkov.
blogspot.co.uk/2013/08/credential-storage-enhancements-android-43.html.

Felt, A. P., Wang, H. J., Moshchuk, A., Hanna, S. & Chin, E. (2011) Permission re-
delegation: Attacks and defenses., in USENIX Security Symposium.

Fledel, Y., Shabtai, A., Potashnik, D. & Elovici, Y. (2012) Google Android: An Updated
Security Review, Mobile Computing, Applications, and Services pp. 401–414.

Fora, P. O. (2013) Defeating security enhancements (se) for android, in DefCon21. URL –
http://www.defcon.org/images/defcon-21/dc-21-presentations/Fora/DEFCON

-21-Fora-Defeating-SEAndroid.pdf.

Franceschi-Bicchierai, L. (2012) Darpa starts up-armoring android phones, tablets. URL –
http://www.wired.com/dangerroom/2012/06/armored-android/.

Friedman, R., Kogan, A. & Krivolapov, Y. (2013) On power and throughput tradeoffs
of wifi and bluetooth in smartphones, Mobile Computing, IEEE Transactions on
12(7), 1363–1376.

Getting Started (2013) URL – http://developer.android.com/training/index.html.
[Accessed: 18-December-2013].

Gleeson, A. & Lucas, M. (2013) Security of the Android Operating System, General Doc-
ument DSTO-GD-0779, DSTO.

Haselsteiner, E. & Breitfuß, K. (2006) Security in near field communication (nfc), in
Workshop on RFID Security RFIDSec.

Khan, S., Banuri, S. H. K., Nauman, M., Khan, S. & Alam, M. (2010) Analysis report on
Android Application Framework and existing Security Architecture.

Kizza, J. M. (2013) Security in wireless networks, in Guide to Computer Network Security,
Springer, pp. 387–411.

Kortvedt, H. S. & Mjølsnes, S. F. (2009) Eavesdropping near field communication, in The
Norwegian Information Security Conference (NISK).

Liebergeld, S. & Lange, M. (2013) Android security, pitfalls and lessons learned, in Infor-
mation Sciences and Systems 2013, Springer, pp. 409–417.

UNCLASSIFIED 19

DSTO–TN–1390 UNCLASSIFIED

Loscocco, P. & Smalley, S. (2001) Integrating flexible support for security policies into the
linux operating system., in USENIX Annual Technical Conference, FREENIX Track,
USENIX, pp. 29–42. URL – http://dblp.uni-trier.de/db/conf/usenix/usenix2
001f.html#LoscoccoS01.

Lu, Y., Meier, W. & Vaudenay, S. (2005) The conditional correlation attack: A practical
attack on bluetooth encryption, in Advances in Cryptology–CRYPTO 2005, Springer,
pp. 97–117.

Menezes, A., van Oorschot, P. C. & Vanstone, S. A. (1996) Handbook of Applied Cryptog-
raphy, CRC Press.

Padgette, J., Scarfone, K. & Chen, L. (2012) Guide to bluetooth security, NIST Special
Publication 800, 121.

Pelechrinis, K., Iliofotou, M. & Krishnamurthy, S. V. (2011) Denial of service attacks in
wireless networks: The case of jammers, Communications Surveys & Tutorials, IEEE
13(2), 245–257.

Permission Element (2013) URL – http://developer.android.com/guide/topics/man
ifest/permission-element.html. [Accessed: 18-December-2013].

Remedios, D., Sousa, L., Barata, M. & Osório, L. (2006) Nfc technologies in mobile phones
and emerging applications, in Information Technology For Balanced Manufacturing
Systems, Springer, pp. 425–434.

Rosenberg, D. (2013) Unlocking the Motorola bootloader. URL – http://blog.azimuth
security.com/2013/04/unlocking-motorola-bootloader.html.

SE Android Notebook (2013) URL – http://selinuxproject.org/page/NB_SEforAndro
id_2.

Smalley, S. (2011) The case for se android. URL – http://selinuxproject.org/~jmorr
is/lss2011_slides/caseforseandroid.pdf.

Smalley, S. (2012) Security Enhanced (SE) Android, LinuxCon North America, San Diego,
USA .

Smalley, S. (2013) Laying a Secure Foundation for Mobile Devices, NDSS .

Smalley, S. & Craig, R. (2013) Security enhanced (se) android: Bringing flexible mac to
android, in Network & Distributed System Security Symposium (NDSS13).

Spill, D. & Bittau, A. (2007) Bluesniff: Eve meets alice and bluetooth, in Proceedings of
USENIX Workshop on Offensive Technologies (WOOT).

The AndroidManifest.xml File (2013) URL – http://developer.android.com/guide/
topics/manifest/manifest-intro.html. [Accessed: 18-December-2013].

TransactionTooLargeException (2013) URL – http://developer.android.com/referen
ce/android/os/TransactionTooLargeException.html. [Accessed: 18-December-
2013].

20 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Validating Security-Enhanced Linux in Android (2013) URL – http://source.android.
com/devices/tech/security/se-linux.html. [Accessed: 18-December-2013].

Van Damme, G., Wouters, K. & Preneel, B. (2009) Practical experiences with nfc security
on mobile phones, in Workshop on RFID Security–RFIDSec09.

UNCLASSIFIED 21

DSTO–TN–1390 UNCLASSIFIED

Appendix A Certificate Authority Key

Generation

C:\>keytool -genkey -alias dia.ca.example -keyalg RSA -keysize 2048

-keystore H:\CAKeyStore.jks

Enter keystore password:

Re-enter new password:

What is your first and last name?

[Unknown]: Device Issuing Authority

What is the name of your organizational unit?

[Unknown]: Cyber and Electronic Warfare Division

What is the name of your organization?

[Unknown]: Defence Science and Technology Organisation

What is the name of your City or Locality?

[Unknown]: Adelaide

What is the name of your State or Province?

[Unknown]: South Australia

What is the two-letter country code for this unit?

[Unknown]: AU

Is CN=Device Issuing Authority, OU=Cyber and Electronic Warfare Division,

O=Defence Science and Technology Organisation, L=Adelaide, ST=South

Australia, C=AU correct?

[no]: yes

Enter key password for <dia.ca.example>

(RETURN if same as keystore password):

C:\>

22 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Appendix B CSR to CA Signed Certificate

protected final X509Certificate generateSignedCertificate(

X500Name pSubjectName,

SubjectPublicKeyInfo pSubjectPublicKeyInformation) {

// Calculate the start/end dates for this certificate

Calendar lCalander = Calendar.getInstance();

Date lStartDate = lCalander.getTime();

// Certificate lasts for 10 years

lCalander.set(Calendar.YEAR, lCalander.get(Calendar.YEAR) + 10);

Date lExpiryDate = lCalander.getTime();

// Serial is just an ever increasing number

BigInteger lSerialNumber = new BigInteger(mCurrentSerial);

// Generate the Certificate

// - Issuer is me (CA)

// - Subject is the requester

X509v3CertificateBuilder lGen = new X509v3CertificateBuilder(

getCAName(), lSerialNumber, lStartDate, lExpiryDate,

pSubjectName, pSubjectPublicKeyInformation);

// Create the content signer and sign the Certificate

JcaContentSignerBuilder lContentSignerBuilder =

new JcaContentSignerBuilder("SHA512WithRSA");

// Create the ContentSigner with the CA’s private key

ContentSigner lContentSigner = lContentSignerBuilder

.build(getCAPrivateKey());

// Sign the certificate

X509CertificateHolder lTempResult = lGen.build(lContentSigner);

return extractCertificate(lTempResult);

}

protected final X509Certificate extractCertificate(

X509CertificateHolder pHolder) {

X509Certificate lResult = null;

InputStream lCertificateStream;

CertificateFactory lCertFactory = CertificateFactory

.getInstance("X.509");

// Read user Certificate

lCertificateStream = new ByteArrayInputStream(pHolder.getEncoded());

lResult = (X509Certificate) lCertFactory

.generateCertificate(lCertificateStream);

UNCLASSIFIED 23

DSTO–TN–1390 UNCLASSIFIED

lCertificateStream.close();

return lResult;

}

24 UNCLASSIFIED

UNCLASSIFIED DSTO–TN–1390

Appendix C SE Android Install-time MAC

Policy

Constructed using reference policy from SE Android Notebook [2013].

<signer signature="@DSTO">

<seinfo value="dsto"/>

<package name="dsto.connectivity.sessionmanager">

<seinfo value="dsto"/>

<allow-permission name="android.permission.BLUETOOTH"/>

<allow-permission name="android.permission.BLUETOOTH_ADMIN"/>

<allow-permission name="android.permission.NFC"/>

<allow-permission name="dsto.connectivity.verifyingservice

.permission.READ_PERMISSION"/>

<allow-permission name="dsto.connectivity.signingservice

.permission.READ_PERMISSION"/>

</package>

<package name="dsto.connectivity.deviceprovisioner">

<seinfo value="dsto"/>

<allow-permission name="dsto.connectivity.verifyingservice

.permission.READ_PERMISSION"/>

<allow-permission name="dsto.connectivity.verifyingservice

.permission.WRITE_PERMISSION"/>

<allow-permission name="dsto.connectivity.signingservice

.permission.READ_PERMISSION"/>

<allow-permission name="dsto.connectivity.signingservice

.permission.WRITE_PERMISSION"/>

</package>

</signer>

<default>

<seinfo value="default"/>

<deny-permission name="dsto.connectivity.verifyingservice

.permission.WRITE_PERMISSION"/>

<deny-permission name="dsto.connectivity.verifyingservice

.permission.READ_PERMISSION"/>

<deny-permission name="dsto.connectivity.signingservice

.permission.WRITE_PERMISSION"/>

<deny-permission name="dsto.connectivity.signingservice

.permission.READ_PERMISSION"/>

</default>

UNCLASSIFIED 25

DSTO–TN–1390 UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

26 UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
DOCUMENT CONTROL DATA

1. CAVEAT/PRIVACY MARKING

2. TITLE

Secure Ad Hoc Networking on an Android Plat-
form

3. SECURITY CLASSIFICATION

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Angus Morton, David Adie, Paul Montague

5. CORPORATE AUTHOR

Defence Science and Technology Organisation
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DSTO NUMBER

DSTO–TN–1390
6b. AR NUMBER

016-201
6c. TYPE OF REPORT

Technical Note
7. DOCUMENT DATE

May, 2014

8. FILE NUMBER

2013/1248018/1
9. TASK NUMBER

INT 07/012
10. TASK SPONSOR

CIOG
11. No. OF PAGES

25
12. No. OF REFS

35

13. URL OF ELECTRONIC VERSION

http://www.dsto.defence.gov.au/

publications/scientific.php

14. RELEASE AUTHORITY

Chief, Cyber and Electronic Warfare Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. DSTO RESEARCH LIBRARY THESAURUS

Mobile computing, Secure communications, Information security

19. ABSTRACT

This document describes and analyses a suite of applications for the Android platform that enables
easy and secure ad hoc networking, with a focus on extensibility and reusability. The applications were
developed by the first author during a Swinburne University Industry-Based Learning placement at
the Defence Science and Technology Organisation, under the latter’s Industry Experience Placement
Program.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Contents
	Abbreviations
	1 Introduction
	2 Android Security
	2.1 SE Android
	2.2 Residual Issues

	3 Device Provisioning
	3.1 Implementation
	3.2 Security Discussion

	4 Connectivity
	4.1 NFC
	4.2 Bluetooth
	4.3 Implementation
	4.4 Security Discussion

	5 Session Management
	5.1 Implementation
	5.2 Peer Discovery
	5.3 Security Discussion

	6 Future Work
	References
	Appendix A Certi�cate Authority KeyGeneration
	Appendix B CSR to CA Signed Certi�cate
	Appendix C SE Android Install-time MACPolicy
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

